
Modelling and implementation of a generic
active protection system for entities in
Virtual Battlespace (VBS)
-
Per-Idar Evensen

17/00879FFI-RAPPORT

FFI-RAPPORT 17/00879 1

Modelling and implementation of a generic
active protection system for entities in Virtual

Battlespace (VBS)

Per-Idar Evensen

Norwegian Defence Research Establishment (FFI) 6 April 2017

 2 FFI-RAPPORT 17/00879

Keywords
Modellering og simulering
Aktive beskyttelsessystemer
Simuleringsmodeller
Simuleringsverktøy
Virtual Battlespace (VBS)

FFI-rapport
FFI-RAPPORT 17/00879

Prosjektnummer
1401

ISBN
P: 978-82-464-2898-7
E: 978-82-464-2899-4

Approved by
Halvor Ajer, Research Manager
Jon E. Skjervold, Director

FFI-RAPPORT 17/00879 3

Summary

Active protection systems (APSs) for combat vehicles have been under development for several
decades. During the last few years this technology has matured, and several systems are
currently being fielded. Examples of such systems are the Russian-made Arena, Raytheon's
Quick Kill, as well as Iron Fist and Trophy used by the Israel Defence Forces (IDF).

In order to equip entities in our combat simulations with active protection systems, we have
implemented a model of a generic hard-kill APS for entities in the simulation tool Virtual
Battlespace (VBS). An APS using hard-kill measures generally means that the incoming
projectiles are physically intercepted and destroyed or degraded.

The modelled APS performs the same sequence of actions as a real APS. It detects, classifies
and tracks, and intercepts incoming projectiles. Our generic APS model can easily be
configured and calibrated to simulate most existing, and possible near-future, hard-kill APSs.

The APS model has been implemented using the VBS scripting language. It can be used by
both virtual and constructive entities in VBS. For virtual entities a graphical user interface (GUI)
showing the status of the APS has been designed and implemented. This GUI has been
implemented in VBSFusion, which is a C++-based application programming interface (API) for
VBS.

 4 FFI-RAPPORT 17/00879

Sammendrag

Aktive beskyttelsessystemer (Active protection systems (APSs)) for stridskjøretøy har vært
under utvikling i flere tiår. I løpet av de siste årene har denne teknologien blitt mer moden, og
flere systemer er nå i operativ bruk. Eksempler på slike systemer er russiske Arena, Quick Kill
fra Raytheon, samt Iron Fist og Trophy som er i bruk i det israelske forsvaret.

For å kunne utstyre entitetene i våre stridssimuleringer med aktive beskyttelsessystemer, har vi
implementert en modell av et generisk, “hard-kill” APS for entiteter i simuleringsverktøyet Virtual
Battlespace (VBS). At et aktivt beskyttelsessystem anvender motmidler klassifisert som “hard-
kill”, betyr at de innkomne prosjektilene fysisk avskjæres og ødelegges eller degraderes.

Vår APS-modell utfører den samme sekvensen av handlinger som et reelt APS. Den detekterer,
klassifiserer og tracker, og avskjærer innkomne prosjektiler. Vår generiske modell kan enkelt
konfigureres og kalibreres til å simulere de fleste eksisterende, og mulige framtidige, “hard-kill”
aktive beskyttelsessystemer.

APS-modellen har blitt implementert i det innebygde skriptspråket i VBS (VBS scripting
language). Den kan brukes av både “virtual” og “constructive” entiteter i VBS. For “virtual”
entiteter har vi utviklet et grafisk brukergrensesnitt som viser statusen til det aktive
beskyttelsessystemet. Det grafiske brukergrensesnittet har blitt implementert i VBSFusion, som
er et C++-basert programmeringsgrensesnitt for VBS.

FFI-RAPPORT 17/00879 5

Content

Summary 3

Sammendrag 4

1 Introduction 7

2 Active protection systems 8
2.1 Soft-kill and hard-kill APSs 8
2.2 Neutralizing incoming projectiles 9

3 Virtual Battlespace (VBS) 11
3.1 Distributed simulation with VBS 12
3.2 Tracking projectiles in VBS 13
3.3 VBS scripting language 14
3.4 VBSFusion 15

4 Modelling and implementation 16
4.1 Modelling 16
4.2 Implementation 16

4.2.1 Detection 16
4.2.2 Classification and tracking 17
4.2.3 Interception 19

4.3 Configuration 22

5 Graphical user interface 25

6 Summary and conclusion 27

References 28

Abbreviations 29

 6 FFI-RAPPORT 17/00879

FFI-RAPPORT 17/00879 7

1 Introduction

Active protection systems (APSs) for combat vehicles have been under development for several
decades. During the last few years this technology has matured, and several systems are
currently being fielded. Examples of active protection systems are the Russian-made Arena,
Raytheon's Quick Kill, as well as Iron Fist and Trophy used by the Israel Defence Forces (IDF).

In order to equip entities in our combat simulations [1] with active protection systems, we have
implemented a model of a generic hard-kill APS for entities in the simulation tool Virtual
Battlespace (VBS). An APS using hard-kill measures generally means that the incoming
projectiles are physically intercepted and destroyed or degraded. The generic APS model can
easily be configured and calibrated to simulate most existing, and possible near-future, hard-kill
APSs.

The APS model has been implemented using the VBS scripting language. It can be used by both
virtual and constructive entities in VBS. For virtual entities a graphical user interface (GUI)
showing the status of the APS has been designed and implemented. This GUI has been
implemented in VBSFusion, which is a C++-based application programming interface (API) for
VBS.

In 2006 we implemented a simple model of an APS for entities in an in-house developed
combat vehicle simulator called NORBASE (Norwegian Battle Simulator Experiment).
NORBASE was based on the commercial game Unreal Tournament 2004 and was used in an
experiment in November 2006 [2]. The APS model in NORBASE was implemented by
overriding the damage calculations and simply not assigning damage to the vehicle if it was hit
in a sector covered by the APS.

The APS model we have implemented for entities in VBS has a higher fidelity and behaves
more like a real APS. It detects incoming projectiles and attempts to physically stop the
projectiles from hitting the vehicle.

This report has been organized as follows. In Chapter 2 a short introduction to hard-kill APSs is
given. Next, in Chapter 3, the simulation tool Virtual Battlespace (VBS) is briefly described.
Chapter 4 describes how the APS model has been implemented, and Chapter 5 describes the
GUI. Finally, a summary and conclusion can be found in Chapter 6.

The work with implementing the APS model has mainly been done in FFI-project 1401
“Combat systems – manoeuvre II” and FFI-project 1353 “Combat Effectiveness in Land
Operations II”.

The APS model described in this report was implemented and tested in version 3.9.2 of VBS
and version 3.9.2 of VBSFusion. This report describes how the APS model was implemented at
the time this report was published.

 8 FFI-RAPPORT 17/00879

2 Active protection systems

Active protection systems (APSs) for combat vehicles have been under development since the
1980's. Such systems are designed to actively prevent incoming projectiles from hitting their
target.

2.1 Soft-kill and hard-kill APSs

APSs are usually classified into soft-kill and hard-kill systems.

• Soft-kill systems use different kinds of countermeasures to alter the electromagnetic or
acoustic signature of the target and thereby disturb the sensors of the incoming threat so
that it misses the target. This can typically be achieved by reducing the signature of the
target, or by enhancing the signature of the background in such a way that the target
becomes less distinct. Examples of soft-kill countermeasures are jamming, smoke-
screens, and decoy flares.

• Hard-kill systems physically intercept and degrade or destroy the incoming threat.
Examples of hard-kill countermeasures are blasts with or without fragments, small
missiles, and multiple explosively formed projectiles (EFPs). Figure 2.1 shows the hard-
kill active protection system Quick Kill from Raytheon intercepting and destroying an
incoming projectile.

As mentioned in Chapter 1, this report describes the modelling and implementation of a generic
hard-kill APS.

Figure 2.1 The hard-kill active protection system Quick Kill from Raytheon intercepting and
destroying an incoming projectile (Raytheon).

FFI-RAPPORT 17/00879 9

2.2 Neutralizing incoming projectiles

To neutralize an incoming projectile, an APS needs to perform the following sequence of
actions:

1. Detect the incoming projectile.

2. Classify and track the incoming projectile and determine if it is necessary to activate
countermeasures.

3. If necessary, activate countermeasures (soft-kill or hard-kill).

For a hard-kill APS activating countermeasures means physically intercepting and destroying
the incoming projectile. Figure 2.2 illustrates the sequence of actions performed by a hard-kill
system.

Figure 2.2 The sequence of actions performed by a hard-kill APS to neutralize an incoming
projectile.

 10 FFI-RAPPORT 17/00879

A hard-kill APS will thus typically include the following main components:

• A sensor system for detecting, classifying, and tracking the incoming projectile. The
sensor system will usually include one or more of the following sensor types: radars,
optical sensor, and lidars.

• A processing system for calculating whether the incoming projectile is a threat, and if
necessary, how to intercept the projectile.

• A system for releasing physical countermeasures for intercepting and destroying the
incoming projectile.

One critical characteristic of a hard-kill APS is how much time it takes from the projectile is
detected until it can be neutralized. This property is decisive regarding what types of projectiles
the APS is effective against. While modern anti-tank missiles typically have velocities between
100 and 400 m/s, modern kinetic energy penetrators (KEPs) typically have velocities between
1,400 and 1,900 m/s. To be effective against KEPs, an APS will only have a few milliseconds
from detection to the projectile have to be neutralized. There are currently no fielded APSs that
are effective against KEPs, but such systems are expected to be available in the future.

Many active protection systems consist of a number of modules mounted around the exterior of
the vehicle. Each of these modules will typically cover a sector of a circle around the vehicle.
An APS module may also contain more than one set of countermeasures, and thus provide
redundant protection. Figure 2.3 shows an example of an APS consisting of eight modules, each
protecting its own sector around the vehicle. Other APSs may have only one turret-like launcher
for releasing countermeasures mounted on top of the vehicle. Systems like this will typically
have 360-degree coverage around the vehicle, and typically also contain a larger number of
countermeasures.

Figure 2.3 Modular APS with eight protected sectors.

FFI-RAPPORT 17/00879 11

3 Virtual Battlespace (VBS)

Virtual Battlespace (VBS) [3] is an interactive, three-dimensional synthetic environment, for
use in military training and experimentation. VBS is developed by Bohemia Interactive
Simulations (BISim) and is based on game technology from the Armed Assault (ARMA) series.

VBS is used by many military organizations worldwide, including the Norwegian Defence, and
has become an industry standard in game-based military simulation. At FFI VBS has been in
use since 2008, mainly for conducting virtual simulation experiments for analysis purposes
[4][5].

VBS is delivered with a comprehensive content library funded by different nations over the
years. VBS version 3.9.2 includes models of 1,965 human characters, 2,285 land, sea, and air
vehicles, 4,955 objects, and 835 weapons and weapon platforms. Figure 3.1 shows images from
VBS.

VBS has its own scripting language for creating new functionality. In addition there is a C++-
based API called VBSFusion for developing plug-ins1 for VBS.

Figure 3.1 Images from VBS (Bohemia Interactive Simulations).

1 A plug-in is a software component which adds a specific feature to an existing application.

 12 FFI-RAPPORT 17/00879

3.1 Distributed simulation with VBS

VBS is a simulation tool for conducting human-in-the-loop (HITL) simulations. A typical setup
for a VBS simulation consists of a dedicated VBS server and a number of VBS clients operated
by human players. VBS is mainly used for virtual simulation, but it can also be used for
constructive simulation with semi-automated forces (SAFs). Furthermore, it is possible to
connect a VBS simulation to other DIS (Distributed Interactive Simulation) or HLA (High
Level Architecture) compliant simulation components via VBS Gateway [6]. Figure 3.2
illustrates a typical setup for a VBS simulation.

Figure 3.2 A typical setup for a VBS simulation.

FFI-RAPPORT 17/00879 13

Entities in a VBS simulation are simulated on one specific computer, which sends updates about
this entity to all the other computers in the VBS simulation. In VBS an entity or an object is said
to be local to the computer where it is simulated. The basic rules for where entities, objects and
projectiles are simulated in a VBS simulation are as follows [7]:

• An avatar (virtual character) is always simulated on the client where the avatar is
operated.

• A vehicle is always simulated on the client operated by its driver.

• Artificial intelligence (AI) controlled entities are simulated on the client operated by
their leader, if the leader is controlled by a human operator. AI entities without leaders
controlled by human operators are simulated on the server.

• AI entities created after mission start will be simulated on the computer where they
were created.

• Objects and empty vehicles are simulated on the server.

• Objects and empty vehicles created after mission start are simulated on the computer
where they were created.

• Unguided bullets, shells, and rockets are simulated locally on each computer, but the
instance of the projectile simulated on the same computer as the entity that fired the
projectile acts as the master. Projectile impacts are only simulated for the master
instance.

• Guided missiles and grenades are simulated on the computer where the entity that fired
the projectile is simulated.

When developing scripts and plugins for VBS, it is important to be aware of these rules.

3.2 Tracking projectiles in VBS

VBS has a main simulation loop which executes the simulation. For each round, the main
simulation loop increases time with one time step/simulation step, or tick and updates the state
of the simulated entities, objects and projectiles. Figure 3.3 shows the positions of a projectile in
VBS (marked with white spheres), which is tracked for each simulation step. With a typical
simulation step lasting between 20 and 30 milliseconds, fast-moving projectiles can travel as
much as 50 meters per simulation step.

 14 FFI-RAPPORT 17/00879

Figure 3.3 The positions of a projectile in VBS (marked with white spheres), which is tracked
for each simulation step.

3.3 VBS scripting language

The VBS engine has its own built-in scripting language. A scripting language (or interpreted
language) is a programming language that is read and executed by another computer program
called an interpreter, rather than being compiled to machine code and executed directly on the
processor. An advantage with scripting languages compared to compiled languages is that it is
usually faster to make changes to a script, since the script only has to be reread by the
interpreter. The major disadvantage is that a script runs much slower than a program that has
been compiled to machine code

The VBS scripting language now includes more than 2,300 scripting commands and a function
library which contains 316 pre-made utility functions. It is continuously growing with each new
version of VBS. The syntax and control structures used by the VBS scripting language are
somewhat similar to the control structures found in C/C++ and Java. However, the VBS
scripting language is not organised in an object-oriented manner, so it can sometimes be
challenging to find which scripting commands to use for implementing some desired
functionality. The VBS scripting language is used to develop additional functionality for the
models in VBS and to create scripted behaviour in missions.

Defined in the VBS scripting language is also a set of event handlers that allows scripts to be
executed when certain events occur in the simulated environment. Examples of such events are

FFI-RAPPORT 17/00879 15

when a model is initialized, when a weapon is fired, or when a model is hit. Documentation for
the VBS scripting language can be found in the VBS Scripting Reference in the Bohemia
Interactive Simulations Wiki [7].

3.4 VBSFusion

VBSFusion is a C++-based API for VBS, developed by SimCentric Technologies. It provides a
comprehensive object-oriented C++ library for developing plug-ins for VBS. The plug-ins are
compiled as dynamic link libraries (DLLs), which can be loaded by the VBS engine.

VBSFusion consists of the following components:

• A set of callback functions which are called by the VBS engine at different stages of the
simulation. Examples of such functions are OnMissionStart(), OnMissionEnd(), and
OnSimulationStep().

• A collection of data classes that are used to store and maintain data fetched from the
VBS engine. The intention of this design concept is to minimize the need for directly
accessing the VBS engine and thereby minimizing the negative impact VBSFusion
plug-ins have on the performance of the VBS engine.

• A collection of utility classes for accessing the VBS engine directly.

• A set of event handlers that allows functions to be executed when certain events occur.

Figure 3.4 illustrates the components of a typical VBSFusion plug-in. More information about
VBSFusion can be found in the VBSFusion User Guide [8].

Figure 3.4 The components of a typical VBSFusion plug-in (SimCentric Technologies).

 16 FFI-RAPPORT 17/00879

4 Modelling and implementation

4.1 Modelling

The modelled APS behaves like a real APS and performs the sequence of actions summarized in
Figure 4.1 and illustrated more closely in Figure 2.2 (see Chapter 2.2).

Figure 4.1 The sequence of actions performed by an APS.

4.2 Implementation

We have tried to implement the APS model both using VBSFusion and the VBS scripting
language, but as explained in Chapter 4.2.1, the VBS scripting language has functionality that
makes the implementation more efficient.

4.2.1 Detection

The brute force implementation for detecting incoming projectiles would be to create a loop that
continuously checks for projectiles within a certain radius of the vehicle. While this solution
might work in a virtual simulation where each vehicle is simulated on the VBS client operated
by its driver, it would not scale very well in a constructive simulation where all vehicles are
controlled by artificial intelligence (AI) and simulated on the VBS server.

A more efficient solution would be to have an event handler in the VBS engine that triggers
each time a projectile moves within a certain radius of a vehicle. Functionality that let us do just
that was introduced in the VBS scripting language in VBS version 3.7, which was released in
July 2015.

In the VBS scripting language it is (from version 3.7) possible to create an invisible collision
volume around an object. This collision volume will trigger a collision event each time it
collides with another object, but it will not affect the simulation of the colliding objects in any
way. The collision volume can be shaped either like a sphere or like a rectangular cuboid.
Figure 4.2 shows a cuboid-shaped collision volume (to the left) and a sphere-shaped collision
volume (to the right) created around a main battle tank (MBT) in VBS.

FFI-RAPPORT 17/00879 17

Figure 4.2 Visualization of a cuboid-shaped collision volume (to the left) and a sphere-shaped
collision volume (to the right) created around a vehicle in VBS.

Which collision volume shape to use, depends on the capabilities of the modelled APS. If the
APS only protects against horizontal attacks, a cuboid-shaped collision volume with low height
is most suitable. If the APS also protects against vertical attacks, or projectiles flying straight
above the target and firing EFPs downward, a sphere-shaped collision volume may be the best
choice.

The size of the collision volume must be set based on what types of projectiles the modelled
APS is able to intercept. As mentioned in Chapter 3.2, fast-moving projectiles in VBS can travel
as much as 50 meters per simulation step. If the size of the collision volume is set too small, the
projectile will be outside the collision volume in one simulation step and already have hit the
vehicle in the next. If the APS is only capable of intercepting anti-tank missiles, a collision
volume radius of 10 to 15 meters will be sufficient, but if the APS is to intercept kinetic energy
penetrators (KEPs) the collision volume needs to have a radius of at least 50 meters. The APS
model may use multiple collision volumes; for instance one large collision volume reacting to
fast-moving projectiles and one smaller collision volume reacting to slower moving projectiles.

4.2.2 Classification and tracking

We have implemented a collision event handler script which is executed each time an object
collides with the invisible collision volume around the vehicle. It is also triggered if an object is
created inside the collision volume (and thus collides with the interior of the volume).

The next step the APS model has to perform is to classify the object colliding with the collision
volume. The most straight forward way to do this in VBS is to classify the projectiles based on
their object classes, but it is also possible to use speed and weight or size (volume of bounding
box) of a projectile for classification. We have used the projectile class to classify the
projectiles, and depending on the capabilities of the modelled APS, we specify a set of projectile
base classes that the APS will react to.

 18 FFI-RAPPORT 17/00879

If the incoming projectile is classified as a potential threat, the APS model needs to track the
projectile and calculate whether it is going to hit the vehicle or not. If the APS is going to be
able to react to fast-moving projectiles, it is essential that these calculations are executed very
fast (within a fraction of a simulation step).

In VBS the position and velocity vector of the incoming projectile can be found directly. To
quickly estimate if the projectile is going to hit the vehicle, we calculate the angular diameter of
the vehicle seen from the position of the projectile and check if the horizontal direction of the
projectile lies within this angle, as illustrated in Figure 4.3. The angular diameter δ can be found
using the formula:

 δ = 2 arctan �
d

2D
� , (4.1)

where d is the actual diameter or length of the vehicle, and D is the distance from the projectile
to the vehicle. The length of the vehicle can be calculated from the bounding box of the 3D
model. Figure 4.4 illustrates the bounding box of a main battle tank (MBT).

If we assume that the vehicle will have a maximum velocity of 60 km/h, it will not travel more
than 0.5 meters during one simulation step. To compensate for this potential movement we can
add one meter to d in equation (4.1).

Depending on the shape of the collision volume, it may also be necessary to check if the vertical
direction of the projectile lies within the angular diameter of the vehicle, which can then be
calculated using the height of the vehicle.

It should also be checked that the vehicle’s sensors has line of sight (LOS) to the incoming
projectile, and this can be done by checking that at least one of the upper corners of the
vehicle’s bounding box has LOS to the projectile.

Figure 4.3 Angular diameter of the vehicle seen from the position of the projectile.

FFI-RAPPORT 17/00879 19

Figure 4.4 The bounding box of the 3D model of a main battle tank in VBS.

4.2.3 Interception

Before intercepting the incoming projectile the APS model has to determine which APS module
to trigger and then check if there are any countermeasures left in this APS module. Some APSs
may also require a certain amount of time to recharge after an activation of countermeasures.

To intercept the incoming projectile we create an invisible cuboid-shaped object (an invisible
“wall”) between the vehicle and the projectile. This object only has a fire geometry (but no
visual geometry). The size of the cuboid will depend on the size of the sectors which are
covered by the modelled APS, but we have modelled it to be one meter thick. How far from the
vehicle the cuboid is created will depend on the specifications of the modelled APS.

Depending on the capabilities of the modelled APS, it is possible to adjust the material
properties of the cuboid so that it can be penetrated by KEPs. The KEP will then hit the vehicle,
but with a reduced velocity and consequently cause less damage. High explosive (HE)
projectiles in VBS will always explode when they hit the cuboid. The cuboid is programmed to
be deleted as soon as it is hit by the incoming projectile. It is also programmed to delete itself
after 0.3 seconds, so even if it is not hit by the projectile it will only exist for a very short time.

The main structure of the collision (CollisionStart) event handler script, which is executed every
time an object collides with the invisible collision volume, is outlined in Figure 4.5. Figure 4.6
shows a series of images illustrating how the APS model is implemented in VBS and visualizes
the detection, interception, and destruction of an incoming projectile.

 20 FFI-RAPPORT 17/00879

Figure 4.5 Outline of the collision event handler script which is executed every time an object
collides with the invisible collision volume around a vehicle equipped with an APS.

FFI-RAPPORT 17/00879 21

Figure 4.6 A series of images illustrating how the APS model is implemented in VBS, with
detection (from the top), interception, and destruction of an incoming projectile.

 22 FFI-RAPPORT 17/00879

4.3 Configuration

To make the configuration of the APS model easy, we have defined a class named
ActiveProtectionSystem in the configuration file (config.cpp) for the vehicle equipped with
APS. The ActiveProtectionSystem class is defined as an internal class in the configuration class
defining the vehicle.

In the ActiveProtectionSystem class we have also defined an internal class for each sector
covered by the APS. We have named these classes: class Sector1, class Sector2, etc., and the
variable nSectors in the ActiveProtectionSystem class specifies how many sectors that are
defined. Figure 4.7 illustrates four possible ways of dividing the circle around a vehicle into
sectors covered by different APS modules.

The parameters we have defined in class ActiveProtectionSystem are listed in Table 4.1, and the
parameters we have defined in class SectorN are listed in Table 4.2. These parameters are read
by the initialization (Init) event handler script for the vehicle and assigned as object variables
for the vehicle (using the setVariable scripting command). In addition we have defined the
parameter bHasAPS in the configuration class for the vehicle. This parameter is used to
determine if a vehicle is equipped with an APS. Figure 4.8 shows an example of a vehicle
configuration class containing the definition of an APS with four sectors.

Figure 4.7 Examples of APSs with four, eight, and twelve sectors.

FFI-RAPPORT 17/00879 23

Parameter Description
bAPSActive If true, the APS is activated.
detectionVolumeType Collision volume type (cuboid or sphere).
detectionRange Radius of collision volume (in meters).
detectionHeight Height of collision volume (in meters). Used only for cuboid.
interceptDistance Intercept Distance from vehicle (in meters).
handledProjectiles Array of projectile classes handled by APS.
nSectors Number of sectors covered by the APS.
GUIType Enumeration used for configuration of GUI.
vehicleType Enumeration used for configuration of GUI.

Table 4.1 The parameters defined in class ActiveProtectionSystem.

Parameter Description
nCountermeasures Number of APS countermeasures in sector.
minAngle Minimum horizontal angle of sector (in degrees).
maxAngle Maximum horizontal angle of sector (in degrees).

Table 4.2 The parameters defined in class SectorN.

 24 FFI-RAPPORT 17/00879

Figure 4.8 Example of a configuration class for a vehicle with an APS with four sectors.

class CfgVehicles {

 class FFI_NO_Army_Leopard_2A4_APS_W_X : VBS2_CA_Army_Leopard_2A4_W_X {

 bHasAPS = true;

 class ActiveProtectionSystem {

 bAPSActive = true;

 GUIType = 2;

 vehicleType = 1;

 interceptDistance = 10;

 detectionVolumeType = “cuboid”;

 detectionRange = 40;

 detectionHeight = 10;

 handledProjectiles[] = {

 vbs2_ShellBase, vbs2_MissileBase, vbs2_RocketBase

 };

 nSectors = 4;

 class Sector1 {

 nCountermeasures = 2;

 minAngle = -45;

 maxAngle = 45;

 };

 class Sector2 {

 nCountermeasures = 2;

 minAngle = 45;

 maxAngle = 135;

 };

 class Sector3 {

 nCountermeasures = 2;

 minAngle = 135;

 maxAngle = 225;

 };

 class Sector4 {

 nCountermeasures = 2;

 minAngle = 225;

 maxAngle = 315;

 };

 };

 };

};

FFI-RAPPORT 17/00879 25

5 Graphical user interface

We have implemented a graphical user interface (GUI) for the APS. The GUI is designed to be
used by the vehicle commander, when the APS model is used in virtual simulations. The GUI
shows if the APS is active or turned off and visualizes the status of each of the defined sectors.
The vehicle commander can turn the APS on and off by using the action menu in VBS. Figure
5.1 shows examples of different statuses of an APS with four sectors, each having two sets of
countermeasures. In the first example (from the left) the APS is fully charged with
countermeasures, and all sectors have status green. In the second example, the front sector has
used one set of countermeasures and has status yellow. Finally, in the third example, the front
sector has depleted both sets of countermeasures and has status red. Figure 5.2 shows images
from VBS with the APS GUI visible in the upper left corner.

The GUI has been implemented as a plug-in for VBS using VBSFusion. The GUI is quite
simple, so it should be possible to implement it using the VBS scripting language as well, but
VBSFusion has an API for drawing head-up displays (HUDs) for VBS which is much easier to
use.

Figure 5.1 Examples of different statuses for an APS with four sectors, each having two sets of
countermeasures.

 26 FFI-RAPPORT 17/00879

Figure 5.2 Images of from VBS with the APS GUI visible in the upper left corner.

FFI-RAPPORT 17/00879 27

6 Summary and conclusion

This report has described the conceptual model and the implementation of a hard-kill active
protection system (APS) for entities in the simulation tool Virtual Battlespace (VBS). The APS
model has high fidelity and performs the same sequence of actions as a real APS. It detects,
classifies and tracks, and intercepts incoming projectiles. The APS model is generic and can
easily be configured to simulate most existing hard-kill APSs. It can be used by both virtual and
constructive entities in VBS.

The APS model has been implemented using the VBS scripting language. For virtual entities a
graphical user interface (GUI) showing the status of the APS has been designed and
implemented using VBSFusion, which is a C++-based application programming interface (API)
for VBS.

 28 FFI-RAPPORT 17/00879

References

[1] P-I. Evensen & D.H. Bentsen, Simulation of Land Force Operations – A Survey of
Methods and Tool, FFI-rapport 2015/01579, 2016.

[2] M. Halsør, S. Martinussen, P. I. Evensen & B. Hugsted, Uttesting av BMS i syntetisk
miljø, FFI-rapport 2007/00139, 2007.

[3] Bohemia Interactive Simulations (BISim) – Virtual Battlespace 3 (VBS3),
https://bisimulations.com/virtual-battlespace-3.

[4] P-I. Evensen & M. Halsør, Experimenting with Simulated Augmented Reality in Virtual
Environments, Interservice/Industry Training, Simulation and Education Conference
(I/ITSEC) 2013, Paper No. 13028, 2013.

[5] P-I. Evensen & M. Halsør, Using Virtual Environments to Evaluate the Operational
Benefit of Augmented Reality, NATO Modelling and Simulation Group (NMSG) Annual
Symposium 2014 (STO-MP-MSG-126), Paper No. 5, 2014.

[6] Bohemia Interactive Simulations (BISim), VBS Gateway Version 2.3 for VBS3 3.9.2,
2016.

[7] Bohemia Interactive Simulations (BISim) Wiki – VBS Scripting Reference,
https://resources.bisimulations.com/wiki/Main_Page.

[8] SimCentric Technologies, VBSFusion v3.9.2 User Guide, 2016.

https://bisimulations.com/virtual-battlespace-3

FFI-RAPPORT 17/00879 29

Abbreviations

AI Artificial Intelligence
API Application Programming Interface
APS Active Protection Systems
BISim Bohemia Interactive Simulations
DIS Distributed Interactive Simulation
DLL Dynamic Link Library
EFP Explosively Formed Projectiles
GUI Graphical User Interface
HE High Explosive
HITL Human-In-The-Loop
HLA High Level Architecture
HUD Head-Up Display
IDF Israel Defence Forces
KEP Kinetic Energy Penetrator
LOS Line Of Sight
MBT Main Battle Tank
SAF Semi-Automated Forces
VBS Virtual Battlespace

Administrative Staff Strategy and Planning

Defence Industrial
Strategy

Ministry of Defence

FFI´s Board

Analysis Maritime SystemsCyber Systems and
Electronic Warfare

Air and
Space SystemsLand Systems Protection and

Societal Security

Defence Research
Review Board

Internal Audit

Director General

About FFI
The Norwegian Defence Research Establishment (FFI)
was founded 11th of April 1946. It is organised as an
administrative agency subordinate to the Ministry of
Defence.

FFI’s mission
FFI is the prime institution responsible for defence
related research in Norway. Its principal mission is to
carry out research and development to meet the require-
ments of the Armed Forces. FFI has the role of chief
adviser to the political and military leadership. In
particular, the institute shall focus on aspects of the
development in science and technology that can
influence our security policy or defence planning.

FFI’s vision
FFI turns knowledge and ideas into an efficient defence.

FFI’s characteristics
Creative, daring, broad-minded and responsible.

Om FFI
Forsvarets forskningsinstitutt ble etablert 11. april 1946.
Instituttet er organisert som et forvaltningsorgan med
særskilte fullmakter underlagt Forsvarsdepartementet.

FFIs formål
Forsvarets forskningsinstitutt er Forsvarets sentrale
forskningsinstitusjon og har som formål å drive forskning
og utvikling for Forsvarets behov. Videre er FFI rådgiver
overfor Forsvarets strategiske ledelse. Spesielt skal
instituttet følge opp trekk ved vitenskapelig og
militærteknisk utvikling som kan påvirke forutsetningene
for sikkerhetspolitikken eller forsvarsplanleggingen.

FFIs visjon
FFI gjør kunnskap og ideer til et effektivt forsvar.

FFIs verdier
Skapende, drivende, vidsynt og ansvarlig.

FFI’s organisation

Forsvarets forskningsinstitutt
Postboks 25
2027 Kjeller

Besøksadresse:
Instituttveien 20
2007 Kjeller

Telefon: 63 80 70 00
Telefaks: 63 80 71 15
Epost: ffi@ffi.no

Norwegian Defence Research Establishment (FFI)
P.O. Box 25
NO-2027 Kjeller

Office address:
Instituttveien 20
N-2007 Kjeller

Telephone: +47 63 80 70 00
Telefax: +47 63 80 71 15
Email: ffi@ffi.no

	Summary
	Sammendrag
	Content
	1 Introduction
	2 Active protection systems
	2.1 Soft-kill and hard-kill APSs
	2.2 Neutralizing incoming projectiles

	3 Virtual Battlespace (VBS)
	3.1 Distributed simulation with VBS
	3.2 Tracking projectiles in VBS
	3.3 VBS scripting language
	3.4 VBSFusion

	4 Modelling and implementation
	4.1 Modelling
	4.2 Implementation
	4.2.1 Detection
	4.2.2 Classification and tracking
	4.2.3 Interception

	4.3 Configuration

	5 Graphical user interface
	6 Summary and conclusion
	References
	Abbreviations
	Blank Page

